Conformal Prediction with Missing Values

Aymeric Dieuleveut

joint work with Margaux Zaffran, Julie Josse, Yaniv Romano
7e journée de Statistique Mathématique
January 18, 2024

Margaux Zaffrant École Polytechnique Inria

Paris - France

Julie Josse
PreMeDICaL INRIA

Montpellier - France

Yaniv Romano
Technion - Israel Institute of Technology
Haifa - Israel

Introduction to missing values

Quantifying predictive uncertainty with missing values

Conclusion

- 30 hospitals
- More than 30000 trauma patients
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks
- 30 hospitals
- More than 30000 trauma patients
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks
Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital features.
- 30 hospitals
- More than 30000 trauma patients
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks
Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital features.

These covariates are not always observed.

Data: $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

Missing values: ubiquitous in data science practice

Data: $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

Missing values: ubiquitous in data science practice

Data: $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

If each entry has a probability 0.01 of being missing:

$$
\begin{aligned}
d=6 & \rightarrow \approx 94 \% \text { of rows kept } \\
d=300 & \rightarrow \approx 5 \% \text { of rows kept }
\end{aligned}
$$

One of the ironies of Big Data is that missing data play an ever more significant role. ${ }^{1}$

[^0]- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.
- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe (NA, 6, 2). Then $m=(1,0,0)$ and $X_{\mathrm{obs}(m)}=(6,2)$.

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, 2$). Then $m=(0,1,0)$ and $X_{\mathrm{obs}(m)}=(-1,2)$.

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.

[^1]- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA})$. Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M=m \mid X)=\mathbb{P}(M=m)$ for all $m \in\{0,1\}^{d}$.

[^2]- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA})$. Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M=m \mid X)=\mathbb{P}(M=m)$ for all $m \in\{0,1\}^{d}$. $M \Perp X$, missingness does not depend on the variables.

[^3]- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA})$. Then $m=(0,1,1)$ and $X_{\mathrm{obs}(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR)
\hookrightarrow Missing At Random (MAR)

[^4]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing.
M is called the mask or the missing pattern.

Example

We observe (-1 , NA, NA). Then $m=(0,1,1)$ and $X_{\text {obs }(m)}=(-1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR)
\hookrightarrow Missing At Random (MAR)
\hookrightarrow Missing Non At Random (MNAR)

[^5]
Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(X^{(k)}, M^{(k)}\right)}_{\text {imputed } X^{(k)}}, Y^{(k)}\}_{k=1}^{n}$.

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(X^{(k)}, M^{(k)}\right)}_{\text {imputed } X^{(k)}}, Y^{(k)}\}_{k=1}^{n}$.
\hookrightarrow we consider an impute-then-regress pipeline in this work.

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(X^{(k)}, M^{(k)}\right)}_{\text {imputed } X^{(k)}}, Y^{(k)}\}_{k=1}^{n}$.
\hookrightarrow we consider an impute-then-regress pipeline in this work.
\checkmark Le Morvan et al. $(2021)^{3}$ show that for any deterministic imputation and universal learner this procedure is Bayes-consistent.
[^6]
Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(X^{(k)}, M^{(k)}\right)}_{\text {imputed } X^{(k)}}, Y^{(k)}\}_{k=1}^{n}$.
\hookrightarrow we consider an impute-then-regress pipeline in this work.
\checkmark Le Morvan et al. $(2021)^{3}$ show that for any deterministic imputation and universal learner this procedure is Bayes-consistent.
x Ayme et al. (2022) ${ }^{4}$ show that even for very simple distributions (linear model, Gaussian noise), this rate of convergence may suffer from curse of dimensionality.
[^7]Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress + Conformalization
Missing Data Augmentation
Experimental results

Conclusion

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$
\begin{equation*}
\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha \tag{MV}
\end{equation*}
$$

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$
\begin{equation*}
\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha \tag{MV}
\end{equation*}
$$

2. Mask-Conditional-Validity (MCV)

$$
\forall m \in\{0,1\}^{d}: \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) \mid M^{(n+1)}=m\right\} \geq 1-\alpha .(\mathrm{MCV})
$$

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress+Conformalization
Missing Data Augmentation
Experimental results

Conclusion

Split Conformal Prediction (Vovk et al., 2005): scheme

Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

Split Conformal Prediction (Vovk et al., 2005): scheme

1)

- Learn $\hat{\mu}$.

Split Conformal Prediction (Vovk et al., 2005): scheme

1)

2)

- Learn $\hat{\mu}$.
- Predict with $\hat{\mu}$.
- Get the residuals $\hat{\varepsilon}_{i}$ and form the set of scores $\mathcal{S}=\left\{\left|\hat{\varepsilon}_{i}\right|, i \in\right.$ Cal $\} \cup\{+\infty\}$.
- Get their $(1-\alpha)$ empirical quantile: $Q_{1-\alpha}(S)$.

Split Conformal Prediction (Vovk et al., 2005): scheme

1)

2)

- Learn $\hat{\mu}$.
- Predict with $\hat{\mu}$.
- Get the residuals $\hat{\varepsilon}_{i}$ and form the set of scores $\mathcal{S}=\left\{\left|\hat{\varepsilon}_{i}\right|, i \in\right.$ Cal $\} \cup\{+\infty\}$.
- Get their $(1-\alpha)$ empirical quantile: $Q_{1-\alpha}(S)$.
- Predict with $\hat{\mu}$.
- Build $\hat{C}_{\alpha}(x):\left[\hat{\mu}(x) \pm Q_{1-\alpha}(\mathcal{S})\right]$.

Split Conformal Prediction (Vovk et al., 2005): scheme

1)

2)

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress+Conformalization
Missing Data Augmentation
Experimental results

Conclusion

Conformalized Quantile Regression (CQR)4: toy example

[^8]

- Learn (or get) $\widehat{Q R}_{\text {lower }}$ and $\widehat{Q R}_{\text {upper }}$

[^9]
Conformalized Quantile Regression (CQR) ${ }^{4}$: calibration step

- Predict with $\widehat{Q R}_{\text {lower }}$ and $\widehat{Q R}_{\text {upper }}$
- Get the scores

$$
\mathcal{S}=\left\{S^{(k)}\right\}_{\mathrm{Cal}} \cup\{+\infty\}
$$

- Compute the $(1-\alpha)$ empirical quantile of \mathcal{S}, noted $q_{1-\alpha}(S)$

$$
\hookrightarrow \quad S^{(k)}:=\max \left\{\widehat{Q R}_{\text {lower }}\left(X^{(k)}\right)-Y^{(k)}, Y^{(k)}-\widehat{Q R}_{\text {upper }}\left(X^{(k)}\right)\right\}
$$

[^10]

- Predict with $\widehat{Q R}_{\text {lower }}$ and $\widehat{Q R}_{\text {upper }}$
- Build

$$
\widehat{C}_{\alpha}(x)=\left[\widehat{Q R}_{\text {lower }}(x)-q_{1-\alpha}(\mathcal{S}) ; \widehat{Q R}_{\text {upper }}(x)+q_{1-\alpha}(\mathcal{S})\right]
$$

[^11]
CQR: theoretical guarantees

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a particular case of Conformal Prediction (CP).

Theorem

Suppose $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n+1}$ are exchangeable (or i.i.d.). CQR applied on $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1-\alpha .
$$

Additionally, if the scores $\left\{S^{(k)}\right\}_{k \in \text { Cal }}$ are a.s. distinct:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1-\alpha+\frac{1}{\# \text { Cal }+1} .
$$

CQR: theoretical guarantees

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a particular case of Conformal Prediction (CP).

Theorem

Suppose $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n+1}$ are exchangeable (or i.i.d.). CQR applied on $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1-\alpha
$$

Additionally, if the scores $\left\{S^{(k)}\right\}_{k \in \mathrm{Cal}}$ are a.s. distinct:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1-\alpha+\frac{1}{\# \mathrm{Cal}+1}
$$

\checkmark Distribution-free, only requires exchangeability \checkmark Any quantile regression algorithm (neural nets, random forest...) \checkmark Finite sample

CQR: theoretical guarantees

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a particular case of Conformal Prediction (CP).

Theorem

Suppose $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n+1}$ are exchangeable (or i.i.d.). CQR applied on $\left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1-\alpha .
$$

Additionally, if the scores $\left\{S^{(k)}\right\}_{k \in \text { Cal }}$ are a.s. distinct:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1-\alpha+\frac{1}{\# \text { Cal }+1} .
$$

\checkmark Distribution-free, only requires exchangeability
\checkmark Any quantile regression algorithm (neural nets, random forest...)
\checkmark Finite sample
\times Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) \underline{X^{(n+1)}=x}\right\} \geq 1-\alpha$

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: s $\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: s $\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores
Ex 2: $s\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\operatorname{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\operatorname{QR}}_{\text {upper }}\left(X_{i}\right)\right)$ in CQR

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: $\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores
Ex 2: $\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\operatorname{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\mathrm{QR}}_{\text {upper }}\left(X_{i}\right)\right)$ in CQR
4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: s $\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores

$$
\text { Ex 2: } \mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\mathrm{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\mathrm{QR}}_{\text {upper }}\left(X_{i}\right)\right) \text { in CQR }
$$

4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
5. For a new point X_{n+1}, return

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

SCP is defined by the conformity score function

Calib. UY Train

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: s $\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores

$$
\text { Ex 2: } \mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\mathrm{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\mathrm{QR}}_{\text {upper }}\left(X_{i}\right)\right) \text { in CQR }
$$

4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
5. For a new point X_{n+1}, return

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

Ex 1: $\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left[\hat{\mu}\left(X_{n+1}\right) \pm q_{1-\alpha}(\mathcal{S})\right]$

SCP is defined by the conformity score function

Calib.

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: $\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores
Ex 2: $\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\mathrm{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\mathrm{QR}}_{\text {upper }}\left(X_{i}\right)\right)$ in CQR
4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
5. For a new point X_{n+1}, return

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

Ex 2: $\widehat{C}_{\alpha}\left(X_{n+1}\right)=\widehat{Q R}_{\text {lower }}\left(X_{n+1}\right)-q_{1-\alpha}(S)$;

$$
\left.\widehat{Q R}_{\text {upper }}\left(X_{n+1}\right)+q_{1-\alpha}(\mathcal{S})\right]
$$

SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size \#Tr) and a calibration set (size \#Cal)
2. Get \hat{A} by training the algorithm \mathcal{A} on the proper training set
3. On the calibration set, obtain $\# \mathrm{Cal}+1$ conformity scores

$$
\mathcal{S}=\left\{S_{i}=\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right), i \in \operatorname{Cal}\right\} \cup\{+\infty\}
$$

Ex 1: s $\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\left|\hat{\mu}\left(X_{i}\right)-Y_{i}\right|$ in regression with standard scores
Ex 2: $\mathrm{s}\left(\hat{A}\left(X_{i}\right), Y_{i}\right):=\max \left(\widehat{\mathrm{QR}}_{\text {lower }}\left(X_{i}\right)-Y_{i}, Y_{i}-\widehat{\mathrm{QR}}_{\text {upper }}\left(X_{i}\right)\right)$ in CQR
4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
5. For a new point X_{n+1}, return

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

\hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

Bonus - SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005).

Theorem

Suppose $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ are exchangeable ${ }^{5}$. SCP on $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$
\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \geq 1-\alpha
$$

If, in addition, the scores $\left\{S_{i}\right\}_{i \in \mathrm{Cal}} \cup\left\{S_{n+1}\right\}$ are almost surely distinct, then

$$
\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1-\alpha+\frac{1}{\# \mathrm{Cal}+1}
$$

Proof: application of the quantile lemma.

Bonus - SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005).

Theorem

Suppose $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ are exchangeable ${ }^{5}$. SCP on $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$
\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \geq 1-\alpha
$$

If, in addition, the scores $\left\{S_{i}\right\}_{i \in \mathrm{Cal}} \cup\left\{S_{n+1}\right\}$ are almost surely distinct, then

$$
\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1-\alpha+\frac{1}{\# \mathrm{Cal}+1}
$$

Proof: application of the quantile lemma.
x Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) X_{n+1}=x\right\} \geq 1-\alpha$

[^12]
SCP: what choices for the regression scores?

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

SCP: what choices for the regression scores?

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

	Standard SCP Vovk et al. (2005)	CQR Romano et al. (2019)
$\begin{gathered} s(\hat{A}(X), Y) \\ \hat{C}_{\alpha}(x) \end{gathered}$ Visu.	$\begin{aligned} & \|\hat{\mu}(X)-Y\| \\ & {\left[\hat{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\right]} \end{aligned}$	$\begin{gathered} \max \left(\widehat{Q R}_{\text {lower }}(X)-Y,\right. \\ Y-\widehat{Q R} \text { upper }(X)) \\ {\left[\widehat{Q R}_{\text {lower }}(x)-q_{1-\alpha}(S) ;\right.} \\ \left.\widehat{Q R}_{\text {upper }}(X)+q_{1-\alpha}(S)\right] \\ \\ 2 \end{gathered}$
\checkmark	black-box around a "usable" prediction	adaptive
x	not adaptive	no black-box around able" prediction

SCP: what choices for the regression scores?

$$
\widehat{C}_{\alpha}\left(X_{n+1}\right)=\left\{y \text { such that } s\left(\hat{A}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}(\mathcal{S})\right\}
$$

	Standard SCP Vovk et al. (2005)	Locally weighted SCP Lei et al. (2018)	CQR Romano et al. (2019)
$\begin{gathered} \mathrm{s}(\hat{A}(X), Y) \\ \widehat{C}_{\alpha}(x) \end{gathered}$ Visu.	$\begin{aligned} & \|\hat{\mu}(X)-Y\| \\ & {\left[\hat{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\right]} \end{aligned}$	$\frac{\|\hat{\mid}(X)-Y\|}{\hat{\rho}(X)}$ $\left[\hat{\mu}(x) \pm q_{1-\alpha}(\mathcal{S}) \hat{\rho}(x)\right]$	$\begin{gathered} \max \left(\widehat{Q R}_{\text {lower }}(X)-Y,\right. \\ \left.Y-\widehat{Q R}_{\text {upper }}(X)\right) \\ {\left[\widehat{Q R}_{\text {lower }}(x)-q_{1-\alpha}(S) ;\right.} \\ \left.\widehat{Q R}_{\text {upper }}(x)+q_{1-\alpha}(S)\right] \\ \\ 2 \\ 2 \end{gathered}$
\checkmark	black-box around a "usable" prediction	black-box around a "usable" prediction	adaptive
x	not adaptive	limited adaptiveness	no black-box around a "usable" prediction

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress+Conformalization
Missing Data Augmentation
Experimental results

Conclusion

CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma (Z. et al. (2023a))

Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ${ }^{6} \phi$:
$\left(\phi\left(X^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.

[^13]
CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma (Z. et al. (2023a))

Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ${ }^{6} \phi$:
$\left(\phi\left(X^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.
\Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees ${ }^{7}$:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha
$$

[^14]
CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma (Z. et al. (2023a))

Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ${ }^{6} \phi$:
$\left(\phi\left(X^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.
\Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees ${ }^{7}$:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha
$$

[^15]
CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma (Z. et al. (2023a))

Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ${ }^{6} \phi$:
$\left(\phi\left(X^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.
\Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees ${ }^{7}$:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha
$$

[^16]
CQR is marginally valid on imputed data sets

$$
\begin{gathered}
Y=\beta^{\top} X+\varepsilon, \\
\beta=(1,2,-1)^{\top}, \varepsilon \Perp X, X \text { and } \varepsilon \text { Gaussian, } 20 \% \text { uniform MCAR missing values. }
\end{gathered}
$$

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

CQR is marginally valid on imputed data sets

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.
CQR (marginal validity)

Warning: the predictive intervals cover properly marginally, but suffer from high disparities depending on the missing patterns.

Missing values induce heteroskedasticity

Gaussian linear model

- $Y=\beta^{T} X+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \Perp(X, M), \beta \in \mathbb{R}^{d}$.
- for all $m \in\{0,1\}^{d}$, there exist μ^{m} and Σ^{m} such that $X \mid(M=m) \sim \mathcal{N}\left(\mu^{m}, \Sigma^{m}\right)$.
\hookrightarrow oracle intervals: smallest predictive interval when the distribution of $Y \mid(X, M)$ is known

Missing values induce heteroskedasticity

Gaussian linear model

- $Y=\beta^{T} X+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \Perp(X, M), \beta \in \mathbb{R}^{d}$.
- for all $m \in\{0,1\}^{d}$, there exist μ^{m} and Σ^{m} such that

$$
X \mid(M=m) \sim \mathcal{N}\left(\mu^{m}, \Sigma^{m}\right)
$$

\hookrightarrow oracle intervals: smallest predictive interval when the distribution of $Y \mid(X, M)$ is known

Proposition (Oracle int. under Gaussian lin. mod., Z. et al. (2023a))

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\operatorname{mis} \mid o b s}^{m} \beta_{\operatorname{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

Missing values induce heteroskedasticity

Gaussian linear model

- $Y=\beta^{T} X+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \Perp(X, M), \beta \in \mathbb{R}^{d}$.
- for all $m \in\{0,1\}^{d}$, there exist μ^{m} and Σ^{m} such that

$$
X \mid(M=m) \sim \mathcal{N}\left(\mu^{m}, \Sigma^{m}\right)
$$

\hookrightarrow oracle intervals: smallest predictive interval when the distribution of $Y \mid(X, M)$ is known

Proposition (Oracle int. under Gaussian lin. mod., Z. et al. (2023a))

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\text {mis } \mid \text { obs }}^{m} \beta_{\text {mis }(m)}+\sigma_{\varepsilon}^{2}} .
$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity

Missing values induce heteroskedasticity

Gaussian linear model

- $Y=\beta^{T} X+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \Perp(X, M), \beta \in \mathbb{R}^{d}$.
- for all $m \in\{0,1\}^{d}$, there exist μ^{m} and Σ^{m} such that

$$
X \mid(M=m) \sim \mathcal{N}\left(\mu^{m}, \Sigma^{m}\right)
$$

\hookrightarrow oracle intervals: smallest predictive interval when the distribution of $Y \mid(X, M)$ is known

Proposition (Oracle int. under Gaussian lin. mod., Z. et al. (2023a))

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\operatorname{mis} \mid o b s}^{m} \beta_{\operatorname{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

Goals reminder: achieve MCV!

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$
\begin{equation*}
\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1-\alpha \tag{MV}
\end{equation*}
$$

2. Mask-Conditional-Validity (MCV)

$$
\forall m \in\{0,1\}^{d}: \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) \mid M^{(n+1)}=m\right\} \geq 1-\alpha .(\mathrm{MCV})
$$

Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed among all the data points, regardless of their mask!

Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed among all the data points, regardless of their mask!

Warning: 2^{d} possible masks

\Rightarrow Splitting the calibration set by mask (Mondrian type) is infeasible (lack of data)!

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress + Conformalization
Missing Data Augmentation
Experimental results

Conclusion

Missing Data Augmentation (MDA) of the calibration set

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

3	NA	NA	1

Initial calibration set

$x^{(1)}$	-1	-10	6	1
$x^{(2)}$	4	NA	-2	2
$x^{(3)}$	5	1	1	NA
$x^{(4)}$	0	NA	NA	1

	Calibration set used			
$\tilde{x}^{(1)}$	-1	NA	NA	1
$\tilde{x}^{(2)}$	4	NA	NA	2
$\tilde{x}^{(3)}$	5	NA	NA	NA
$\tilde{x}^{(4)}$	0	NA	NA	1

Algorithms: MDA with Exact masking or with Nested masking.

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress + Conformalization
Missing Data Augmentation
MDA with Exact masking
MDA with Nested masking
Experimental results

Test point

3	NA	NA	1

Initial calibration set

$x^{(1)}$	-1	-10	6	1
	$x^{(2)}$	4	NA	-2
$x^{(3)}$	5	1	1	NA
	$x^{(4)}$	0	NA	NA

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set

2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:

3	NA	NA	1

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_{j}^{(n+1)}=1$, set $\tilde{M}_{j}^{(k)}=1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$

3	NA	NA	1

$\tilde{\boldsymbol{x}}^{(1)}$	-1	NA	NA	1
$\tilde{\boldsymbol{x}}^{(2)}$	4	NA	NA	2
$\tilde{x}^{(3)}$				
$\tilde{\boldsymbol{x}}^{(4)}$	0	NA	NA	1

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_{j}^{(n+1)}=1$, set $\tilde{M}_{j}^{(k)}=1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
5.2 Impute the new calibration set

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_{j}^{(n+1)}=1$, set $\tilde{M}_{j}^{(k)}=1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
5.2 Impute the new calibration set
5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(\mathcal{S})$

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_{j}^{(n+1)}=1$, set $\tilde{M}_{j}^{(k)}=1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
5.2 Impute the new calibration set
5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(\mathcal{S})$
5.4 Impute the test point

CQR-MDA with exact masking in words

1. Split the training set into a proper training set and calibration set
2. Train the imputation function on the proper training set
3. Impute the proper training set
4. Train the quantile regressors on the imputed proper training set
5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_{j}^{(n+1)}=1$, set $\tilde{M}_{j}^{(k)}=1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
5.2 Impute the new calibration set
5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(\mathcal{S})$
5.4 Impute the test point
5.5 Predict with the quantile regressors and the correction previously obtained, $q_{1-\alpha}(\mathcal{S})$

MDA-Exact achieves Mask-Conditional-Validity (MCV)

Theorem (CP-MDA-Exact achieves MCV, Z. et al. (2023a))

If: i) the data is exchangeable, ii) $M \Perp X$, iii) $(Y \Perp M) \mid X$, then for almost all imputation function CP-MDA-Exact is such that for any $m \in\{0,1\}^{d}$:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, m) \mid M=m\right) \geq 1-\alpha,
$$

and if additionally the scores are almost surely distinct:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, m) \mid M=m\right) \leq 1-\alpha+\frac{1}{\# \mathrm{Cal}^{\mathrm{m}}+1} .
$$

What if we kept all observations?

What if we kept all observations?

- Predict with $\widehat{Q R}_{\text {lower }}$ and $\widehat{Q R}_{\text {upper }}$
- Build

$$
\widehat{C}_{\alpha}(x)=\left[\widehat{Q R}_{\text {lower }}(x)-q_{1-\alpha}(\mathcal{S}) ; \widehat{Q R}_{\text {upper }}(x)+q_{1-\alpha}(\mathcal{S})\right]
$$

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress + Conformalization
Missing Data Augmentation
MDA with Exact masking
MDA with Nested masking
Experimental results

Conclusion

Idea: modify the test point accordingly

Test point

3	NA	NA	1

	Initial calibration set			
$x^{(1)}$	-1	-10	6	1
	$x^{(2)}$	4	NA	-2
$x^{(3)}$	5	1	1	NA
	$x^{(4)}$	0	NA	NA

Calibration set used

	$\tilde{x}^{(1)}$	-1	NA	NA
$\tilde{x}^{(2)}$	4	NA	NA	2
	$\tilde{x}^{(3)}$	5	NA	NA
$\tilde{x}^{(4)}$	0	NA		
		N	NA	1

Temporary test points

3	NA	NA	1
3	$N A$	NA	1
3	$N A$	$N A$	NA
3	$N A$	$N A$	1

\rightsquigarrow similar motivation than Barber et al. (2021) ${ }^{8}$ and Gupta et al. (2022) ${ }^{9}$.

[^17]
CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:

$$
\begin{aligned}
& \text { 5.1 Set } \tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right) \text { for } k \\
& \text { in the calibration set }
\end{aligned}
$$

	3	NA	NA		1
$\tilde{\boldsymbol{x}}^{(1)}$	-1	NA	NA	1	
$\tilde{\boldsymbol{x}}^{(2)}$	4	NA	NA	2	
$\tilde{\boldsymbol{x}}^{(3)}$	5	NA	NA	NA	
$\tilde{x}^{(4)}$	0	NA	NA	1	

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

	3	NA	NA	1
$\tilde{x}^{(1)}$	-1	NA	NA	1
$\tilde{x}^{(2)}$	4	NA	NA	2
	$\tilde{x}^{(3)}$	5	NA	NA
	NA			
$\tilde{x}^{(4)}$	0	NA	NA	1

5.2 Impute the new calibration set
5.3 For each augmented calibration point k :

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

	3	NA		NA	1
$\tilde{\boldsymbol{x}}^{(1)}$	-1	NA	NA	1	
$\tilde{\boldsymbol{x}}^{(2)}$	4	NA	NA	2	
$\tilde{x}^{(3)}$	5	NA	NA	NA	
$\tilde{x}^{(4)}$	0	NA	NA	1	

5.2 Impute the new calibration set
5.3 For each augmented calibration point k :
5.3.1 Get its score $S^{(k)}$

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

$\tilde{x}^{(1)}$	-1	NA	NA	1
	$\tilde{\boldsymbol{x}}^{(2)}$	4	NA	NA
$\tilde{x}^{(3)}$	5	2		
	$\tilde{x}^{(4)}$	0	NA	NA
		NA		

5.2 Impute the new calibration set

5.3 For each augmented calibration point k :
5.3.1 Get its score $S^{(k)}$

Impute-then-predict on the augmented test point
5.3.2 $\left(X^{(n+1)}, \tilde{M}^{(k)}\right)$, giving: $\widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)$ and $\widehat{Q R}_{1-\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)$

3	NA	NA	1
3	NA	NA	1
3	NA	NA	NA
3	NA	NA	1

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

$\tilde{x}^{(1)}$	-1	NA	NA	1
$\tilde{x}^{(2)}$	4	NA	NA	2
$\tilde{x}^{(3)}$	5	NA	NA	NA
$\tilde{x}^{(4)}$	0	NA	NA	1

5.2 Impute the new calibration set

5.3 For each augmented calibration point k :

5.3.1 Get its score $S^{(k)}$

Impute-then-predict on the augmented test point
5.3.2 $\frac{\left(X^{(n+1)}, \tilde{M}^{(k)}\right), \text { giving: } \widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right) \text { and }{ }^{(n+\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)}{}$

3	NA	NA	1
3	$N A$	$N A$	1
3	$N A$	$N A$	$N A$
3	$N A$	$N A$	1

5.3.3 Compute the corrected prediction interval:

$$
\left[\widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)-S^{(k)} ; \widehat{Q R}_{1-\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)+S^{(k)}\right]:=\left[Z_{\text {lower }}^{(k)} ; Z_{\text {upper }}^{(k)}\right]
$$

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

$\tilde{x}^{(1)}$	-1	NA	NA	1
	$\tilde{x}^{(2)}$	4	NA	NA
$\tilde{x}^{(3)}$	5	NA	NA	NA
	$\tilde{x}^{(4)}$	0	NA	NA
			1	

5.2 Impute the new calibration set
5.3 For each augmented calibration point k :
5.3.1 Get its score $S^{(k)}$

Impute-then-predict on the augmented test point
5.3.2 $\frac{\left.\left(X^{(n+1)}, \tilde{M}^{(k)}\right), \text { giving: } \widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right) \text { and } \tilde{X}^{(n+1), k}\right)}{}$

3	NA	NA	1
3	$N A$	$N A$	1
3	$N A$	$N A$	$N A$
3	$N A$	$N A$	1

5.3.3 Compute the corrected prediction interval:

$$
\left[\widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)-S^{(k)} ; \hat{Q R}_{1-\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)+S^{(k)}\right]:=\left[Z_{\text {lower }}^{(k)} ; Z_{\text {upper }}^{(k)}\right]
$$

5.4 Compute the quantiles $q_{\alpha}\left(\left\{Z_{\text {lower }}^{(k)}\right\}_{k \in \text { Cal }}\right)$ and $q_{1-\alpha}\left(\left\{Z_{\text {upper }}^{(k)}\right\}_{k \in \text { Cal }}\right)$

CQR-MDA with nested masking in words

5. For a test point $\left(X^{(n+1)}, M^{(n+1)}\right)$:
5.1 Set $\tilde{M}^{(k)}=\max \left(M^{(k)}, M^{(n+1)}\right)$ for k in the calibration set

$\tilde{\boldsymbol{x}}^{(1)}$	-1	NA	NA	1
$\tilde{\boldsymbol{x}}^{(2)}$	4	NA	NA	2
$\tilde{\boldsymbol{x}}^{(3)}$	5	NA	NA	NA
$\tilde{\boldsymbol{x}}^{(4)}$	0	NA	NA	1

5.2 Impute the new calibration set
5.3 For each augmented calibration point k :
5.3.1 Get its score $S^{(k)}$

Impute-then-predict on the augmented test point
5.3.2 $\frac{\left(X^{(n+1)}, \tilde{M}^{(k)}\right), \text { giving: } \widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right) \text { and } 12\left(\tilde{X}^{(n+1), k}\right)}{\widehat{Q R}_{1-\alpha}}$

3	NA	NA	1
3	$N A$	$N A$	1
3	$N A$	$N A$	NA
3	$\mathbb{N A}$	$\mathbb{N A}$	1

5.3.3 Compute the corrected prediction interval:

$$
\left[\widehat{Q R}_{\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)-S^{(k)} ; \hat{Q R}_{1-\alpha / 2}\left(\tilde{X}^{(n+1), k}\right)+S^{(k)}\right]:=\left[Z_{\text {lower }}^{(k)} ; Z_{\text {upper }}^{(k)}\right]
$$

5.4 Compute the quantiles $q_{\alpha}\left(\left\{Z_{\text {lower }}^{(k)}\right\}_{k \in \text { Cal }}\right)$ and $q_{1-\alpha}\left(\left\{Z_{\text {upper }}^{(k)}\right\}_{k \in \text { Cal }}\right)$
5.5 Predict $\left[q_{\alpha}\left(\left\{Z_{\text {lower }}^{(k)}\right\}_{k \in \text { Cal }}\right) ; q_{1-\alpha}\left(\left\{Z_{\text {upper }}^{(k)}\right\}_{k \in \text { Cal }}\right)\right]$

MDA-Nested is Marginally Valid (MV)

Theorem (CP-MDA-Nested marginal validity, Z. et al. (2023b))
If the data is exchangeable, then for almost all imputation function CP-MDA-Nested is such that:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, M)\right) \geq 1-2 \alpha .
$$

MDA-Nested is Marginally Valid (MV)

Theorem (CP-MDA-Nested marginal validity, Z. et al. (2023b))
If the data is exchangeable, then for almost all imputation function CP-MDA-Nested is such that:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, M)\right) \geq 1-2 \alpha .
$$

\checkmark Any missing mechanism (no need to assume $M \Perp X$)
\checkmark Does not require $(Y \Perp M) \mid X$
X Marginal guarantee

MDA-Nested is Marginally Valid (MV)

Theorem (CP-MDA-Nested marginal validity, Z. et al. (2023b))

If the data is exchangeable, then for almost all imputation function CP-MDA-Nested is such that:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, M)\right) \geq 1-2 \alpha
$$

\checkmark Any missing mechanism (no need to assume $M \Perp X$)
\checkmark Does not require $(Y \Perp M) \mid X$
X Marginal guarantee
Proof element: based on Jackknife+ ideas (Barber et al., 2021).
Leaving-out the k-th data point to predict on the l-th data point \leftrightarrow
Apply the mask of the k-th data point to the l-th data point on which you predict

MDA-Nested (nearly) achieves Mask-Conditional-Validity (MCV)

Stochastic domination of the quantiles (SDQ)

Let $(\stackrel{\circ}{m}, \breve{m}) \in\left(\{0,1\}^{d}\right)^{2}$. If $\stackrel{\circ}{m} \subset \breve{m}$ then for any $\delta \in[0,0.5]$: $q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)} \leq q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)}$, and $q_{\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)} \geq q_{\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)}$.
\rightsquigarrow predictive uncertainty increases with bigger masks.

MDA-Nested (nearly) achieves Mask-Conditional-Validity (MCV)

Stochastic domination of the quantiles (SDQ)

Let $(\stackrel{\circ}{m}, \breve{m}) \in\left(\{0,1\}^{d}\right)^{2}$. If $\stackrel{\circ}{m} \subset \breve{m}$ then for any $\delta \in[0,0.5]$: $q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\stackrel{m}{m}}, M=\stackrel{\circ}{m}\right)} \leq q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)}$, and $q_{\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)} \geq q_{\delta / 2}^{\left.Y \mid\left(X_{\mathrm{obs}(\check{m})}\right), M=\check{m}\right)}$.
\rightsquigarrow predictive uncertainty increases with bigger masks.
Theorem (CP-MDA-Nested (nearly) achieves MCV, Z. et al. (2023a)) If i) the data is exchangeable, ii) $M \Perp X$, iii) $(Y \Perp M) \mid X$, iv) $S D Q$ holds, then for almost all imputation function "CP-MDA-Nested" is s.t. for any $m \in\{0,1\}^{d}$:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, m) \mid M=m\right) \geq 1-\alpha
$$

MDA-Nested (nearly) achieves Mask-Conditional-Validity (MCV)

Stochastic domination of the quantiles (SDQ)

Let $(\stackrel{\circ}{m}, \breve{m}) \in\left(\{0,1\}^{d}\right)^{2}$. If $\stackrel{m}{m} \subset \breve{m}$ then for any $\delta \in[0,0.5]$: $q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\stackrel{m}{m}\right)} \leq q_{1-\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)}$, and $q_{\delta / 2}^{Y \mid\left(X_{\mathrm{obs}(\check{m})}, M=\check{m}\right)} \geq q_{\delta / 2}^{\left.Y \mid\left(X_{\mathrm{obs}(\check{m})}\right), M=\check{m}\right)}$.
\rightsquigarrow predictive uncertainty increases with bigger masks.

Theorem (CP-MDA-Nested (nearly) achieves MCV, Z. et al. (2023a))

If i) the data is exchangeable, ii) $M \Perp X$, iii) $(Y \Perp M) \mid X$, iv) $S D Q$ holds, then for almost all imputation function "CP-MDA-Nested" is s.t. for any $m \in\{0,1\}^{d}$:

$$
\mathbb{P}\left(Y \in \widehat{C}_{\alpha}(X, m) \mid M=m\right) \geq 1-\alpha
$$

Change on MDA-Nested: outputs any
$\left[q_{\alpha}\left(\left\{Z_{\text {lower }}^{(k)}\right\}_{k \in \mathrm{Cal}^{\check{m}}}\right) ; q_{1-\alpha}\left(\left\{Z_{\text {upper }}^{(k)}\right\}_{k \in \text { Cal }^{\text {lim }}}\right)\right]$, where \breve{m} is randomly ${ }^{10}$ selected such that $m \subset \check{m}$.
${ }^{10}$ The randomness may depend on $\# \mathrm{Cal}^{\text {m }}$.

Summary of CP-MDA

MDA achieves Mask-Conditional-Validity (MCV)

$$
Y=\beta^{T} X+\varepsilon,
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.

MDA achieves Mask-Conditional-Validity (MCV)

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.

MDA achieves (MCV) in an informative way

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.

MDA achieves (MCV) in an informative way

$$
Y=\beta^{T} X+\varepsilon
$$

$\beta=(1,2,-1)^{T}, \varepsilon \Perp X, X$ and ε Gaussian, 20% uniform MCAR missing values.

Introduction to missing values

Quantifying predictive uncertainty with missing values
Split Conformal Prediction
Conformalized Quantile Regression
Impute-then-Regress + Conformalization
Missing Data Augmentation
Experimental results

Conclusion

Some settings

- Imputation by iterative ridge (\sim conditional expectation)

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
- Uniform MCAR missing values, with probability 20%
- 100 repetitions

Synthetic experiments (Gaussian linear model, $d=10$)

Synthetic experiments (Gaussian linear model, $d=10$)

Synthetic experiments (Gaussian linear model, $d=10$)

Synthetic experiments (Gaussian linear model, $d=10$)

CQR-MDA-Exact

Synthetic experiments (Gaussian linear model, $d=10$)

CQR-MDA-Nested

.

Synthetic experiments (Gaussian linear model, $d=10$)

家

Before more experiments, visualisation

Before more experiments, visualisation

\checkmark : marginal coverage, i.e.
$\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, M)\right)$)

Before more experiments, visualisation

\checkmark : marginal coverage, i.e.

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, M)\right)
$$

V : lowest coverage, i.e.

$$
\min _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

Before more experiments, visualisation

\checkmark : marginal coverage, i.e.

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, M)\right)
$$

V : lowest coverage, i.e.

$$
\min _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

Before more experiments, visualisation

\checkmark : marginal coverage, i.e.

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, M)\right)
$$

V : lowest coverage, i.e.

$$
\min _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

© : highest coverage, i.e.

$$
\max _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

Before more experiments, visualisation

\checkmark : marginal coverage, i.e.

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, M)\right)
$$

V : lowest coverage, i.e.

$$
\min _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

© : highest coverage, i.e.

$$
\max _{m \in \mathcal{M}} \mathbb{P}\left(Y \in \hat{C}_{\alpha}(X, m) \mid M=m\right)
$$

Semi-synthetic experiments

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Real data experiment: TraumaBase ${ }^{\circledR}$, critical care medicine

Introduction to missing values

Quantifying predictive uncertainty with missing values

Conclusion

Take-home-messages

- CP marginal guarantees hold on the imputed data set.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).
- Extension: consistency of universal quantile learner when chained with almost any imputation function.

Perspectives/connection to other works

- Investigate alternative methods relying on trade-offs between MDA-Exact and MDA-Nested

Perspectives/connection to other works

- Investigate alternative methods relying on trade-offs between MDA-Exact and MDA-Nested
- Relationship with Gibbs et al. $(2023)^{11}$
\checkmark Beyond MCAR
X Upper bound in $\frac{2^{d}}{(n+1) \mathrm{P}_{M}(m)}$: high value for less probable masks
\hookrightarrow MCV are non-overlapping groups: boils down to splitting the calibration set!

[^18]
Perspectives/connection to other works

- Investigate alternative methods relying on trade-offs between MDA-Exact and MDA-Nested
- Relationship with Gibbs et al. $(2023)^{11}$
\checkmark Beyond MCAR
X Upper bound in $\frac{2^{d}}{(n+1) \mathrm{P}_{M}(m)}$: high value for less probable masks
\hookrightarrow MCV are non-overlapping groups: boils down to splitting the calibration set!

[^19]
Perspectives/connection to other works

- Investigate alternative methods relying on trade-offs between MDA-Exact and MDA-Nested
- Relationship with Gibbs et al. (2023) ${ }^{11}$
\checkmark Beyond MCAR
X Upper bound in $\frac{2^{d}}{(n+1) \mathbb{P}_{M}(m)}$: high value for less probable masks
\hookrightarrow MCV are non-overlapping groups: boils down to splitting the calibration set!
- Quantify the impact of the imputation's choice on Quantile Regression quality in finite sample

[^20]Thank you! Questions? :)

References i

Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. (2022). Near-optimal rate of consistency for linear models with missing values. ICML.
Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). Predictive inference with the jackknife+. The Annals of Statistics, 49(1).
Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees.

Gupta, C., Kuchibhotla, A. K., and Ramdas, A. (2022). Nested conformal prediction and quantile out-of-bag ensemble methods. Pattern Recognition, 127.
Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What's a good imputation to predict with missing values? NeurIPS.

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association.

References it

Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. NeurIPS.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3).
Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a Random World. Springer US.
Z., M., Dieuleveut, A., Josse, J., and Romano, Y. (2023a). Conformal prediction with missing values. ICML.
Z., M., Dieuleveut, A., Josse, J., and Romano, Y. (2023b). Predictive uncertainty quantification with missing values. To be submitted.

Zhu, Z., Wang, T., and Samworth, R. J. (2019). High-dimensional principal component analysis with heterogeneous missingness. arXiv.

Appendix

Towards asymptotic individualized coverage

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote $g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-g \circ \Phi(X, M))\right]:=\mathcal{R}_{\beta, \phi}(g)$.

Let Φ be an imputation function chosen by the user.
Denote $g_{\beta, \phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-g \circ \phi(X, M))\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: argmin $\mathbb{E}\left[\rho_{\beta}(Y-f(X, M))\right]$ (informal).

Let Φ be an imputation function chosen by the user.
Denote $g_{\beta, \phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-g \circ \Phi(X, M))\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-f(X, M))\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.

Let Φ be an imputation function chosen by the user.
Denote $g_{\beta, \phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-g \circ \Phi(X, M))\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-f(X, M))\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.
\hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote $g_{\beta, \phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-g \circ \Phi(X, M))\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}(Y-f(X, M))\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.
\hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).

Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all \mathcal{C}^{∞} imputation function Φ, if $F_{Y \mid\left(X_{\text {obs }(M)}, M\right)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.

Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all \mathcal{C}^{∞} imputation function Φ, if $F_{Y \mid\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.
$\hookrightarrow \mathbb{P}\left(Y \in \widehat{C}_{\alpha}(x) \mid X=x, M=m\right) \geq 1-\alpha$ for any $m \in \mathcal{M}$ and any $x \in \mathbb{R}^{d}$, asymptotically with a super quantile learner.

$$
d=3
$$

Data generation

$(X, Y) \in \mathbb{R}^{3} \times \mathbb{R}$.
$Y=\beta^{T} X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1)^{T}$ and
$\left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{ccc}1 & 0.8 & 0.8 \\ 0.8 & 1 & 0.8 \\ 0.8 & 0.8 & 1\end{array}\right)\right)$.

Data generation

$(X, Y) \in \mathbb{R}^{3} \times \mathbb{R}$.
$Y=\beta^{T} X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1)^{T}$ and
$\left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{ccc}1 & 0.8 & 0.8 \\ 0.8 & 1 & 0.8 \\ 0.8 & 0.8 & 1\end{array}\right)\right)$.
All components of X each have a probability 0.2 of being missing, Completely At Random.

Simulation settings

- Method: CQR
- Basemodel: neural network
- 200 repetitions
- train size of 250 points
- calibration size of 250 points
- test size of 2000 points

$d=10$, with missing data augmentation

Data generation

$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}$.
$Y=\beta^{T} X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1,3,-0.5,-1,0.3,1.7,0.4,-0.3)^{T}$ and

$$
\left(X_{1}, \cdots, X_{10}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}
1 \\
\vdots \\
\vdots \\
1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0.8 & \cdots & 0.8 \\
0.8 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0.8 \\
0.8 & \cdots & 0.8 & 1
\end{array}\right)\right)
$$

Data generation

$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}$.
$Y=\beta^{T} X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1,3,-0.5,-1,0.3,1.7,0.4,-0.3)^{T}$ and
$\left(X_{1}, \cdots, X_{10}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}1 \\ \vdots \\ \vdots \\ 1\end{array}\right),\left(\begin{array}{cccc}1 & 0.8 & \cdots & 0.8 \\ 0.8 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0.8 \\ 0.8 & \cdots & 0.8 & 1\end{array}\right)\right)$.
All components of X each have a probability 0.2 of being missing, Completely At Random.

Simulation settings: varying training size

- Method: CQR
- Basemodel: neural network
- Imputation: iterative (\approx conditional expectation)
- Mask as features: yes
- 100 repetitions
- train size varies
- calibration size of 1000 points
- test size of 2000 points

Results on the worst group

Results on the best group

Synthetic experiments, 40% of missing values (Gaussian linear model, $d=10$)

Synthetic experiments, 40% of missing values (Gaussian linear model, $d=10$)

ঞ্ণী

Synthetic experiments, 40% of missing values (Gaussian linear model, $d=10$)

Synthetic experiments, 40% of missing values (Gaussian linear model, $d=10$)

Synthetic experiments, 40% of missing values (Gaussian linear model, $d=10$)

ஷi

Simulation settings: beyond MCAR

- 6 variables (denote this set $X_{\text {missing }}$) out of 10 can be missing (the 4 others form the set $X_{\text {observed }}$)
$\rightarrow X_{\text {missing }}=\left\{X_{1}, X_{2}, X_{3}, X_{5}, X_{8}, X_{9}\right\} ;$
- Proportion of missing entries fixed to be 20%.

MAR missingness

- Probability of the variables in $X_{\text {missing }}$ to be missing given by a logistic model of arguments $X_{\text {observed }}$.
- This setting is declined 5 times, with different weights for the logistic model.

MNAR self masked missingness

- Probability of each variable in $X_{\text {missing }}$ to be missing given by a logistic model of argument the same variable of $X_{\text {missing }}$.
- This setting is declined 5 times, with different weights for the logistic model.

MNAR quantile censorship missingness

- Missing values are introduced at random in each q-quantile of the variables in $X_{\text {missing }}$.
- 6 different settings: q varies between $0.5,0.75,0.8,0.85,0.9$ and 0.95 .

 Censorship at quantile level 0.9

Censorship at quantile level 0.95

Semi-synthetic experiments

Bio data set

Meps_19 data set

Bike data set

TraumaBase ${ }^{\circledR}$

Data set description i

- Age: the age of the patient (no missing values);
- Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66\% missing values);
- Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82% missing values);
- VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);
- RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37% missing values);
- SI: the shock index. It indicates the level of occult shock based on heart rate $(H R)$ and systolic blood pressure (SBP), that is $\mathrm{SI}=\frac{\mathrm{HR}}{\mathrm{SBP}}$, upon arrival at hospital (2.09% missing values);
- HR: the heart rate measured upon arrival of hospital (1.62% missing values).

[^0]: ${ }^{1}$ Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B

[^1]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^2]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^3]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^4]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^5]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^6]: ${ }^{3}$ Le Morvan, Josse, Scornet \& Varoquaux (2021), What's a good imputation to predict with missing values?, NeurlPS

[^7]: ${ }^{3}$ Le Morvan, Josse, Scornet \& Varoquaux (2021), What's a good imputation to predict with missing values?, NeurIPS
 ${ }^{4}$ Ayme, Boyer, Dieuleveut \& Scornet (2022), Near-optimal rate of consistency for linear models with missing values, ICML

[^8]: ${ }^{4}$ Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

[^9]: ${ }^{4}$ Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

[^10]: ${ }^{4}$ Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

[^11]: ${ }^{4}$ Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

[^12]: ${ }^{5}$ Only the calibration and test data need to be exchangeable.

[^13]: ${ }^{6}$ Even if the imputation is not accurate, the guarantee will hold.

[^14]: ${ }^{6}$ Even if the imputation is not accurate, the guarantee will hold.
 ${ }^{7}$ The upper bound also holds under continuously distributed scores.

[^15]: ${ }^{6}$ Even if the imputation is not accurate, the guarantee will hold.
 ${ }^{7}$ The upper bound also holds under continuously distributed scores.

[^16]: ${ }^{6}$ Even if the imputation is not accurate, the guarantee will hold.
 ${ }^{7}$ The upper bound also holds under continuously distributed scores.

[^17]: ${ }^{8}$ Predictive inference with the jackknife+, The Annals of Statistics
 ${ }^{9}$ Nested conformal prediction and quantile out-of-bag ensemble methods, Pattern Recognition

[^18]: ${ }^{11}$ Conformal Prediction With Conditional Guarantees

[^19]: ${ }^{11}$ Conformal Prediction With Conditional Guarantees

[^20]: ${ }^{11}$ Conformal Prediction With Conditional Guarantees

